MA 242 Test 1 Version 1

- 1. (20 points) Use vectors $\vec{a} = \langle 1, -2, 1 \rangle$ and $\vec{b} = \langle 2, 3, 1 \rangle$ to answer the following:
 - a) Find a vector in the same direction as \vec{a} , but with magnitude 7
 - b) Find the area of the parallelogram with adjacent edges \vec{a} and \vec{b}
 - c) Find the angle between \vec{a} and \vec{b}
- 2. (20 points) Find an equation of the plane containing the point A(2,3,4) and the line x=1+t, y=4-t, z= 7+2t
- 3. (12 points) Find parametric equations of the line through (2,8, -6) and perpendicular to the plane 11x-4y+8z=10
- 4. (20 points) A ball is thrown from the ground at an angle of elevation of 45° above the horizontal with an initial speed v_0 . The ball lands 20 m away. Use is $\vec{a} = <0,-10>$ for the acceleration due to gravity.
 - a) Find the velocity vector $\vec{\mathbf{v}}$ (Your answer can have \mathbf{v}_0 in it)
 - b) Find the position vector $\vec{\mathbf{r}}$ (Your answer can have \mathbf{v}_0 in it)
 - c) Find the initial speed vo
- 5. (15 points) A 16 lb weight is suspended from two cables as shown below.
 - a) Write tension vector T_1 in its component form.
 - b) Find the magnitude of the tension in each cable

6. (13 points) Find the magnitude of the torque about point P if a 24 N force is applied as shown

1. (20 points)

b)
$$\vec{a} \times \vec{b} = \begin{vmatrix} \uparrow & \uparrow & \hat{k} \\ 1 & -2 & 1 \end{vmatrix} = \langle -2 - 3, -(1-2), 3+4 \rangle$$

$$= \langle -5, 1, 7 \rangle$$

$$\Theta = COS \left(\frac{-3}{V_6 V_1 4} \right)$$

$$(2,3,4)$$

A

P

 $V = < 1,-1,27$
 $(1,4,7)$

$$\overrightarrow{PA} = \langle 2-1, 3-4, 4-7 \rangle = \langle 1, -1, -3 \rangle$$

$$-5(x-2)-5(y-3)+0(7-4)=0$$

5. (15 pts)

$$||\vec{r}|| = \sqrt{16+16} = \sqrt{32}$$
4 $||\vec{r}|| = 24 \sqrt{32} \sin(10^{8})$

a)
$$R = \langle 0, -107 \rangle$$

 $7 = \langle 0, -10t \rangle + 2$

$$V_0 \frac{\sqrt{3}}{2} t^{-5} + \frac{2}{5} = 0$$

$$20 - 5t^2 = 0$$

$$4 = t^2 \quad t = 2$$

$$V_0 = 20$$
 $V_0 = 20/\sqrt{2} = 10\sqrt{2}$