MA 241 Test 4 Version 1: Be sure to show all of your work and specify every test you use as well as the requirements for each test as we have done in class.

- 1. (30 points) Determine if the following series converge or diverge. **Find the sum of convergent series.** Justify your answers thoroughly as we have done in class.
 - a) $\sum_{n=1}^{\infty} \cos\left(\frac{1}{n}\right)$
 - b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}} \frac{1}{\sqrt{n}}$ Include the first three partial sums with your answer
 - c) $\sum_{n=0}^{\infty} \frac{8}{(-3)^n}$
- 2. (6 points) Use $a_n = \frac{1}{n}$ to answer the following:
 - a) Does the sequence $a_n = \frac{1}{n}$ converge or diverge? If it converges, find its limit.
 - b) Does the series $\sum_{n=1}^{\infty} a_n$ converge or diverge? Briefly justify your answer.
- 3. (13 points) Determine if the series $\sum_{n=2}^{\infty} \frac{1}{n[\ln(n)]^2}$ converges or diverges by the Integral Test. Briefly mention the two conditions we need to have before we can apply the Integral Test.
- 4. (24 points) Find the radius and interval of convergence of $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n \sqrt{n+3}}$
- 5. (14 points) a) Find a power series representation for $f(x) = \frac{x}{16-x^4}$ and determine its radius of convergence. Fully simplify your series as we have done in class.
 - b) Use your answer from part a) to find $\int \frac{x}{16-x^4} dx$
- 6. (13 points) Determine if the following series are absolutely convergent, conditionally convergent, or divergent
 - a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3+1}$
 - $b)\sum_{n=1}^{\infty} \frac{n^2}{(-5)^n}$

b)
$$|S_1 = \sqrt{3} - 1|$$
 $|S_2 = \sqrt{3} - 1| + \sqrt{4} - \sqrt{2}$
 $|S_3 = \sqrt{3} - 1| + \sqrt{4} - \sqrt{2} + \sqrt{5} + \sqrt{5}$
 $|S_4 = -1| + \sqrt{4} - \sqrt{2} + \sqrt{5} + \sqrt{5}$
 $|S_n = -1| - \sqrt{2} + \sqrt{n+1} + \sqrt{n+2}$
 $|S_n = -1| - \sqrt{2} + \sqrt{n+1} + \sqrt{n+2}$
 $|S_n = \sqrt{1 - \sqrt{2}}|$ Converges to
 $|Telescoping|$

c)
$$8 - 8 + 8 - - - Goometric$$

 $a + ar = 5$

2- (6 points) a) Yes lim I = 0 b) Harmenic Seres diverges 3. (13 points) positive, decreasing So X (INX) dx u=lnx du= tody Sing_ hz du = lim St tz dy = lim -1 | t = lim -1 + 1 = 1 t> = 1/12 t> = 1/12 1/12 Enting converges by Integral test

4. (24 points) Ratio fest

$$|x| = |x| = |$$

5, (14 points)

a)
$$\frac{x}{16} \left(\frac{1}{1 - \frac{x^{4}}{16}} \right) = \frac{x}{16} \frac{x^{4}}{16} \frac{x^{4}}{16}$$

6. (13 points) a) $\frac{2}{n^3+1} \leq \frac{2}{n^3}$ p-series converges comparison test absolutely convergent b) Ratio test lim anti an $=\lim_{n\to\infty}\left|\frac{(n+1)^2}{5n^2}\right|=\int_{S}$