MA 242 Test 2 Review Sheet

Section 2.3 Fundamental Quantities Associated with a Curve

Find the tangent vector and unit tangent vector Be able to find the angle between two curves Be able to find arc length

Examples p. 68: 9 also look over in-class examples, webassign, and <u>the</u> <u>Arc Length Worksheet</u>

Section 2.4 Curvature, Torsion, and the Osculating Plane

I'll give you the formulas on p. 80 if you need them

Examples p. 83: 3,7,11

Section 3.1 Real-valued Multivariable Functions

Be able to find the domain of functions of 2 or 3 variables Given a function of 2 variables draw multiple level curves Use traces to reconstruct the graph of a surface Examples p. 25: 1,5,7, problems from in class and webassign

Section 3.2 Limits and Continuity:

Be able to show a limit does not exist Know the definition of continuity Be able to find the limit of a function when it exists Examples p. 24: 1,11,13,15,17,18 (without hint),19,20. Also look at the Limits Worksheet

Section 3.3 Partial Derivatives:

Know Clairaut's Theorem Be able to take partial derivatives <u>Partial Derivatives Worksheet</u> Know how to find the equations of the tangent plane and the normal line Examples p. 48: 1,5,9,11,14,17,19

Section 3.4 Differentiability of Multivariable Functions:

Be able to find a linear approximation to f at a point Understand how the equation for the tangent plane relates to the equation of linear approximation Examples p. 60: 3,9,12,13

Section 3.5 Directional Derivatives and the Gradient Vector

Be able to find the derivative of f in the direction of a vector v, be able to take the derivative in the direction from a point P to Q

Know how to maximize the directional derivative

See the Worksheet on Directional derivatives

- Understand the different cases of the chain rule and the different ways we can apply it
- Examples p. 85: 7,8,9,10,11,17,19,21,23 Also look over the examples from in class and webassign

Section 3.6 Optimization

Know the 2nd Derivative Test

Be able to identify local maxs, mins, and saddle points

(Refer to the Worksheet on Max/Min)

Know how to find global max and min values on a closed bounded set D (See the <u>Worksheet on Absolute Max/Min</u>)

Examples p. 24: 3,5,11,13,15. Also look over in class examples